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within the translation look-aside buffer entry to lock a page
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1
EFFICIENT LOCKING OF MEMORY PAGES

CROSS-REFERENCE TO RELATED
APPLICATION

This patent application is a U.S. National Phase Applica-
tion under 35 U.S.C. §371 of International Application No.
PCT/US2012/031651, filed Mar. 30, 2012, entitled EFFI-
CIENT LOCKING OF MEMORY PAGES.

FIELD OF INVENTION

The field of invention relates generally to the computing
system design, and, more specifically, to efficient locking of
memory pages.

BACKGROUND

Traditional Integration of Co-Processors

As semiconductor manufacturing processes are reaching
an era that approaches 1 trillion transistors per die, design
engineers are presented with the issue of how to most
effectively put to use all the available transistors. One design
approach is to implement specific computation intensive
functions with dedicated hardware “acceleration” on die
along with one or more general purpose CPU cores.

Acceleration is achieved with dedicated logic blocks
designed to perform specific computation intensive func-
tions. Migrating intensive computations to such dedicated
logic blocks frees the CPU core(s) from executing signifi-
cant numbers of instructions thereby increasing the effec-
tiveness and efficiency of the CPU core(s).

Although “acceleration” in the form of co-processors
(such as graphics co-processors)) are known in the art, such
traditional co-processors are viewed by the OS as a separate
“device” (within a larger computing system) that is external
to the CPU core(s) that the OS runs on. These co-processors
are therefore accessed through special device driver soft-
ware and do not operate out of the same memory space as
a CPU core. As such, traditional co-processors do not share
or contemplate the virtual addressing-to-physical address
translation scheme implemented on a CPU core.

Moreover, large latencies are encountered when a task is
offloaded by an OS to a traditional co-processor. Specifi-
cally, as a CPU core and a traditional co-processor essen-
tially correspond to separate, isolated sub-systems, signifi-
cant communication resources are expended when tasks
defined in the main OS on a GPP core are passed to the
“kernel” software of the co-processor. Such large latencies
favor system designs that invoke relatively infrequent tasks
on the co-processor from the main OS but with large
associated blocks of data per task. In effect, traditional
co-processors are primarily utilized in a coarse grain fashion
rather than a fine grain fashion.

As current system designers are interested in introducing
more acceleration into computing systems with finer grained
usages, a new paradigm for integrating acceleration in
computing systems is warranted.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which like references indicate similar elements
and in which:
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FIG. 1 shows a computing system whose processing cores
each include a general purpose processing core and accel-
erators that are tightly coupled to the general purpose
processing core;

FIG. 2 shows a prior art process for locking a page of
memory;

FIG. 3 shows a prior art process for swapping a page out
of memory;

FIG. 4 shows an inefficiency when the processes of FIGS.
2 and 3 are merged;

FIG. 5 shows a memory access unit having a lock bit in
a TLB to lock a page of memory that has been associated
with an accelerator;

FIG. 6 shows a first process that uses the lock bit of FIG.
5;
FIG. 7 shows a second process that use the lock bit of FIG.
5;

FIG. 8 shows a first computing system embodiment;

FIG. 9 shows a second computing system embodiment;

FIG. 10 shows a third computing system embodiment;

FIG. 11 shows a fourth computing system embodiment;

FIG. 12 shows a software instruction converter.

DETAILED DESCRIPTION

FIG. 1 shows new processing core 100_1 architecture in
which accelerators 101_1 to 101_N are designed akin to
large scale functional units coupled to the core’s traditional
general purpose CPU (or, more generically, “CPU core” or
“CPU”) 102 which has one or more general purpose instruc-
tion execution pipelines 103. Multiple such cores 100_1 to
100_X may be disposed on a single processor 120 disposed
on a semiconductor chip as observed in FIG. 1. Larger
computer systems may be constructed by coupling multiple
ones of processor 120 together (e.g., through ports of
respective interconnect circuitry residing between a proces-
sor’s cores and cache and memory controller).

Here, standard instructions are read from memory and
executed by the core’s traditional functional units in the
CPU core 102. Other types of instructions that are received
by the processing core 100_1, however, will trigger an
accelerator into action. In a particular implementation, the
underlying hardware supports the software’s ability to call
out a specific accelerator in code. That is, a specific com-
mand can be embodied into the code by the software
programmer (or by a compiler), where, the specific com-
mand calls out and defines the input operand(s) for a specific
accelerator unit.

The command is ultimately represented in some form of
object code. During runtime, the underlying hardware
“executes” the object code and, in so-doing, invokes the
specific accelerator with the associated input data.

Upon being invoked, the accelerator operates out of the
same memory space as the CPU core 102. As such, data
operands may be identified to the accelerator with virtual
addresses whose corresponding translation into physical
address space is the same as those used by the CPU core 102.
Moreover, generally, the execution time of an accelerator
unit’s execution of a command is longer than that of a
traditional/standard instruction (owing to the complex
nature of the tasks being performed). The input operand(s)
and/or resultant may also be larger than the standard register
sizes of the instruction execution pipeline(s) within the CPU
102.

An accelerator can therefore be generally viewed as being
coarser grained (having larger execution times and/or oper-
ating on larger data chunks) than the traditional functional
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units and instructions of the CPU 102. At the same time, an
accelerator can also generally be viewed as being finer
grained, or at least more tightly coupled to the CPU core 102
than a traditional co-processor.

Specifically, the avoidance of a time expensive “driver
call” in order to invoke the accelerator and/or the sharing of
same memory space by the accelerator and general purpose
CPU 102 corresponds to tighter coupling to the between the
general purpose CPU 102 and accelerator as compared to
that of a traditional co-processor. Moreover, the specific
individual tasks that the accelerators are called on to perform
may also be more fine grained than the larger, wholesale
tasks traditionally performed by a co-processor. Specific
individual tasks that are suitable for implementation with an
accelerator as a single “invokable” operation include texture
sampling, motion search or motion compensation, security
related computations (e.g., cryptography, encryption, etc.),
specific financial computations, and/or specific scientific
computations.

Often, the processor core 102 will support the execution
of a virtual machine monitor (VMM) 109 that itself supports
the instantiation of multiple virtual machines 108_1 through
108_7 that each support at least one of its own operating
system instances 107_1 through 107_7 which turn each
support at least one application software program 110_1
through 110_7

As is understood in the art, memory locations within
system memory can be organized into “pages”, where, each
page has a virtual address that is referred to by operating
program code. The virtual address space can be larger than
the actual physical address space of the system memory of
the computing system that the program code is operating
upon. An operating system (OS), virtual machine (VM)
and/or virtual machine monitor (VMM), or any combination
thereof, all hereinafter referred to as an OS for convenience,
manages the mapping of the virtual address space to the
physical address space.

With the virtual address space typically being much larger
than the physical address space, pages of content that
correspond to specific virtual addresses are frequently
swapped into physical system memory addresses (e.g., from
deeper, e.g., non volatile, storage) at the expense of other
pages (that correspond to other virtual addresses) of content
that are swapped out of physical system memory. Conceiv-
ably, a same page of content could be swapped into a first
address of physical memory, swapped back out to deeper
storage and later in time swapped back into a second address
of physical memory, where, the first and second physical
address are different.

The OS is responsible for controlling the swapping of
pages in and out physical system memory, and, keeping
track of the corresponding changes to the virtual to physical
address translations that arise as a natural consequence of
the page swapping activity.

In a common situation, the OS will “lock” the memory
pages reserved for the use of an accelerator. By locking a
page, the computing system effectively ensures that the
accelerator will have that page to operate out of when the
accelerator is invoked. Commonly, more than one page may
be locked and reserved for the use of an accelerator. FIG. 2
shows a prior art process by which an OS and the underlying
CPU hardware locks a memory page.

According to the process of FIG. 2, the OS decides that a
page should be locked 201. The OS maintains elsewhere in
memory an array-like data structure (“STRUCT_PAGE”)
where attributes are kept for each page in system memory.
STRUCT_PAGE is organized into system memory such that
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the address for the set of attributes for any specific page is
MEMMAP+PHYS_ADDR where MEMMAP is a value that
is maintained by the OS, and, PHYS_ADDR is the physical
address resulting from a virtual to physical address transla-
tion of the page’s virtual address.

In response to the decision to the lock the page 201, the
OS determines the address of the page’s set of attributes in
STRUCT_PAGE by fetching the value of MEMMAP,
obtaining the page’s PHYS_ADDR by effecting a virtual to
physical address translation form the page’s virtual address,
and, adding the MEMMAP value to the PHYS_ADDR value
202. Once the address for the page’s attributes has been
calculated 202, the OS issues a lock instruction to set a “lock
bit” in the page’s attributes that indicates the page is locked
203. Specifically, the OS issues an instruction that includes
the just calculated address 203 of the page’s attributes as an
input operand and, when executed, causes the underlying
CPU hardware to execute an atomic micro-op that physi-
cally sets the lock bit in STRUCT_PAGE within system
memory.

Over the course of subsequent operation, the OS contin-
ues to manage the swapping in/out of pages to/from physical
system memory. As part of this aspect of OS processing,
referring to FIG. 3, the OS may target the locked page for
eviction from system memory 301. As such, the OS’s
standard page eviction process includes again calculating
302 the address of the page’s address in STRUCT_PAGE (as
in process 202), and issuing another instruction that causes
the CPU hardware to read the value of the locked bit in the
page’s attributes in STRUCT_PAGE 303. If the page is still
locked 304, the OS understands it has to target another page
for eviction from system memory 305. If the page has been
unlocked since it was locked 304, the OS swaps the page out
of system memory in favor of another page 306.

Traditionally, a co-processor and its associated locked
memory page(s) have been implemented as a quasi-perma-
nent fixture in a computing system. That is, traditionally a
math co-processor or graphics co-processor (e.g., GPU)
would be “enabled” and its memory pages “locked” as part
of the normal boot up process of the computer upon power
on and/or system reset events. Under normal operation, the
co-processor would remain enabled and its associated
memory pages remain locked until shutdown, reset or power
off of the computer.

With a newer paradigm of acceleration coming into play,
accelerators are expected to be enabled/disabled much more
frequently. For example, a specific accelerator may be
enabled to assist a specific task/application (e.g., that itself
is being activated), then be disabled (e.g., to provide
memory space for another accelerator whose actual use is
more immediate and/or the specific task/application is idled,
closed or does not imminently need the accelerator), then be
enabled again upon a new need for the accelerator (e.g., a
new task is being executed that depends on the same
accelerator). The memory pages that are associated with the
accelerator and locked as a consequence are likewise
expected to be locked and unlocked at a much more frequent
pace than what was typical of a co-processor within a
traditional computing system.

Inefficiency can result if the standard mechanism for
locking/unlocking pages is not improved. An example of
such inefficiency is observed in FIG. 4. FIG. 4 shows a
process in which the page is unlocked prior to the OS
targeting the page for swapping out from system memory.
That is, FIG. 3 shows a more detailed examination of
process string 201-202-203 of FIG. 2 in combination with
process string 301-302-303-304-306 of FIG. 3.
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Referring to FIG. 4, as in FIG. 2, the OS decides to lock
a page 401, calculates the address where the page’s attri-
butes are located in STRUCT_PAGE in system memory 402
and issues an instruction that causes the locked bit to be set
in the page’s attributes 403. Processes 401 through 403 may
represent, for example, the locking of a page that is asso-
ciated with a freshly enabled accelerator.

At process 404, the OS decides to unlock the page. As
such, the address where the page’s attributes are found is
recalculated 405 and an instruction is executed 406 that
causes the CPU hardware to unlock the locked bit that was
set in process 403. Process sequence 404-406 may corre-
spond, for example, to the unlocking of the page(s) associ-
ated with the disablement of the accelerator whose prior
enablement causes the locking of the same page(s) in
processes 401-403.

Subsequent to the unlocking of the page(s) 406, the OS
decides to swap the page out 407. As such, the OS again
calculates the address of where its locked bit is located in
STRUCT_PAGE 408 (e.g., by translating the page’s virtual
address to its PHYS_ADDR and combining it with MEM-
MAP) and causes the CPU hardware to read the locked bit
from the page’s attributes in STRUCT_PAGE 409. In seeing
that the unlocked bit is not set in the attributes of STRUCT _
PAGE (i.e., is not locked because of process 406), the OS
causes the page to be swapped out of memory 410.

Inefficiency is observed in the process of FIG. 4 in that at
least two unnecessary accesses to STRUCT_PAGE in sys-
tem memory are made (to set the lock bit 403 and unset the
lock bit 406). Both of these accesses are time consuming and
eat away at overall CPU performance, yet, because the page
was unlocked 406 before the OS targeted it to be swapped
out 407, the locking/unlocking activity 403/406 was in effect
of no consequence. That is, for example, in the particular
circumstance where the page’s associated accelerator is
disabled before the OS decides to target the page to be
swapped out of system memory, the page need not have been
locked and then unlocked (i.e., it could have remained
unlocked throughout).

As such, FIGS. 5 and 6 pertain to an improved approach
that does not access a page’s lock bit in STRUCT_PAGE
540 in system memory 550 because the page is associated
with an accelerator. FIG. 5 shows an embodiment of a
memory access execution unit 530 that may be imple-
mented, for example, as one of the functional units within a
pipeline 103 of a CPU core 102 of FIG. 1 and FIG. 6 shows
a corresponding process that can be executed with the
functional unit of FIG. 5.

As observed in FIG. 5, the memory access unit 530 is
configured with a data translation look-aside buffer (TLB)
531 and memory access circuitry 532. The data TL.B 531 and
memory access circuitry 532 are known features in present
CPUs and the role of each need not be discussed in depth
here. A brief discussion is appropriate, however.

Essentially, as described above, application software calls
out “virtual” addresses. Each virtual address corresponds to
the upper bits of a block of system memory referred to as a
“page”. The underlying OS is responsible for understanding
the actual size of the hardware’s memory space and over-
seeing the mapping of the virtual addresses called out by the
application software to the memory space’s actual physical
addresses.

The TLB 531 is a table maintained in the CPU core that
contains virtual to physical address translations. When the
software calls out data to be fetched from a specific virtual
memory address, the TLB 531 is snooped with the virtual
address being used as a look-up parameter. If there is a hit
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in the TLB 531, the TLB entry that was hit upon contains the
physical address for the virtual memory address. The physi-
cal address is then called out by the hardware to fetch the
data. Here, the physical address corresponds to the upper
address bits of a “page” of system memory space.

Typically, multiple caching levels are searched for a cache
line having an address that consists of: i) upper bits com-
posed of the physical address returned from the TLB 531
snoop; and, ii) lower bits composed of the lower bits of the
virtual address used as the snoop’s look up parameter. If the
cache line is not found in any of the caches, the address is
used to fetch the cache line from system memory. If the
look-up into the TLB 531 results in a miss, the memory
access circuitry 532 (which may include a hardware page
walker (not shown) that) issues a request to fetch the virtual
to physical address translation for the associated page from
cache or system memory and enters it into the TLB 531. As
described above, the memory access circuitry 532 is also
used for accessing STRUCT_PAGE 540 which maintains
attributes for the various memory pages in the system.

As observed in FIG. 5 the TLB 531 includes various
attribute data for each entry/translation in the table. An
improvement as observed in FIG. 5 includes the addition of
a “locked” bit 533 in the attribute data.

Referring to the process of FIG. 6, the OS first decides to
enable an accelerator and lock a page of system memory
space for use by the accelerator 601. However, rather than
invoke the memory access circuitry to set the lock bit located
in STRUCT_PAGE in system memory, the hardware instead
merely sets the lock bit in the TLB 602. As such no access
to system memory is made to “lock” the page upon the
accelerator being enabled.

The manner in which the lock bit is set in the TLB may
vary from implementation to implementation. According to
a first approach, the OS is aware of the lock bit in the TLB
and OS source code calls out the setting of the lock bit in the
TLB explicitly.

According to a second approach, the OS is unaware of the
lock bit in the TLB but a compiler that compiles OS program
code for execution of the OS on the hardware is aware of the
lock bit in the TLB. As such, the compiler is “smart enough”
to construct object code that sets the lock bit in the TLB
when it compiles OS source code that attempts to set the
lock bit in STRUCT_PAGE in system memory response to
the enablement of an accelerator.

According to either of the first or second approaches, the
general purpose pipeline 503 of a CPU core 502 may include
logic circuitry 560 to execute an instruction PGLOCK X Y
that sets the lock bit in the TLB 531. Here, X is the virtual
address of the page to be locked and Y is a binary input
operand where, for example, Y="1" causes the logic cir-
cuitry 560 to set the lock bit in the entry in the TLB for the
virtual address, or, Y="0" causes the logic circuitry 560 to
clear the lock bit in the entry in the TLB for the virtual
address.

In another approach, the OS and the compiler are unaware
of the lock bit in the TLB. Here, logic circuitry 560, instead
or responding to an explicit instruction, is designed to
automatically flag an attempt by the memory access circuitry
532 to the lock bit in STRUCT_PAGE for a page that is
associated with an accelerator that is enabled or will immi-
nently be enabled. In response to the detection of these
conditions, logic circuitry 560 automatically sets the lock bit
in the TLB entry for the page targeted by the attempted
TRUCT_PAGE access.

For any of these approaches, if the TLB entry for the
targeted page is not in the TLB, the memory access circuitry
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532 (including a hardware table walker within the memory
access circuitry 532) may first fetch the entry from system
memory and store it in the TLB. The lock bit of the entry for
the newly created entry in the TLB 531 is set to the
appropriate value.

Continuing with a discussion of the process of FIG. 6,
upon a subsequent OS decision to unlock the page because
the accelerator is being disabled 603, logic circuitry 560
clears the lock bit in the TLB 604. Any of the various
implementation approaches discussed just above for the
setting of the bit may also be used to clear the lock bit.
Comparing the process of FIG. 6 with the process of FIG. 4,
note that the process of FIG. 6 avoids a pair of inefficient
accesses to system memory unlike processes 403 and 406 of
FIG. 4.

After the OS’s decision 603 to unlock the page and the
associated lock bit in the TLB is cleared 604, the OS targets
the page 605 as a candidate page to swap out of system
memory.

In an implementation where the OS is aware of the page
lock entry in the TLB, the OS calls out an instruction to read
the TLB entry’s contents, or at least the lock bit portion of
the entry (the read instruction may include the page’s virtual
address as an input operand so the correct entry in the TLB
is identified). With the TLB read data revealing that the lock
bit is not set, the OS understands that the page is not locked
and goes forward with the swapping out of the page without
objection from the hardware 606.

Alternatively, a compiler may flag OS source code written
to access STRUCT _PAGE 540 to read the status of the lock
bit and instead impose into the object code an instruction to
read the lock bit value from the TLB for the corresponding
virtual address rather than from STRUCT_PAGE.

If the neither the OS nor a compiler is aware of the lock
bit in the TLB, the OS may call out one or more instructions
designed to access STRUCT_PAGE 540 to see if the lock bit
is set. Again, the address for the correct STRUCT_PAGE
location may be calculated by translating the page’s virtual
address to its PHYS_ADDR and combining that with the
contents of MEMMAP. In a further embodiment, the MEM-
MAP value is kept within a control register of the associated
CPU core rather than being maintained by the OS. Besides
a possible speedup of the STRUCT_PAGE address calcu-
lation, the storage of MEMMAP in a control register rather
than its being maintained by the OS permits the hardware
(e.g., logic circuitry 560) to support a more generic
STRUCT_PAGE access instruction that automatically
fetches MEMMARP from the control register and combines it
with PHYS_ADDR (e.g., rather than the OS object code
calling a sequence of instructions to perform the calculation)
to produce the correct STRUCT_PAGE location. Alterna-
tively or in combination, storing MEMMAP in a control
register avoids the OS having to maintain or view it. Here,
logic circuitry 560 within the CPU core hardware may
automatically flag the attempted access, and, instead, squash
the external attempt to system memory in favor of reading
the value of the lock bit from the TLB.

Alternatively to any of these options, the OS, compiler
and CPU may not impose any knowledge of the lock bit in
the TLB and may simply permit access to system memory
and read the lock bit in STRUCT_PAGE. Again, MEMMAP
may be read from a control register by the CPU hardware to
automatically calculate the correct STRUCT_PAGE loca-
tion.

In the case where some intelligence is utilized to read the
value of the lock bit in the TLB and present that value to the
OS, the OS will understand that the page is unlocked and
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will move forward with the swapping out of the page 606.
In the case where the OS is permitted to access the value of
the lock bit in STRUCT_PAGE in system memory, note that
the avoidance of the initial setting the lock bit in system
memory at procedure 602 causes the OS to receive a correct
reading from the lock bit in STRUCT_PAGE (i.e., that the
page is not locked). As such, the OS will correctly go
forward with swapping the page out of system memory 606.

As part of the standard swapping out process 606, the OS
calls out a TLB_FLUSH instruction to flush the entry for the
page from the TLB. Because the lock bit in the entry in the
TLB for the page is not set, the entry is flushed without any
objection from the CPU core hardware.

FIG. 7 shows another process, in contrast to the process
of FIG. 6, in which the OS targets the page to be swapped
out before the page’s associated accelerator is disabled. As
such, in this case, the OS attempts to swap out a page whose
lock bit is set in the TLB but is not set in STRUCT_PAGE
in system memory.

Here, processes, 701 and 702 set the lock bit in the TLB
entry for the page so as to avoid an expensive system
memory access to STRUCT_PAGE as described previously
with respect to processes 601, 602 of the flow diagram of
FIG. 6. After the lock bit is set, however, the OS decides the
swap the page out of system memory 703. In this case, the
lock bit is still set because, for instance, the accelerator
associated with the page is still in use or has not yet been
otherwise disabled.

As before with respect to FIG. 6, in an implementation
where the OS is aware of the page lock entry in the TLB, the
OS calls out an instruction to read the TLB entry’s contents
(the read instruction may include the page’s virtual address
as an input operand). With the read data revealing that the
lock bit is set, the OS understands that the page is locked and
identifies another page to swap out of system memory.

Alternatively, a compiler may flag OS source code written
to access STRUCT_PAGE and instead impose into the
object code an instruction to read the lock bit value in the
TLB. Again the OS will understand that the lock bit is set
and identify another page to swap out of memory.

If neither the OS or compiler is aware of the lock bit in the
TLB, the OS may call out one or more instructions designed
to access STRUCT_PAGE to see if the lock bit is set (e.g.,
again, by translating the page’s virtual address to its PHYS_
ADDR and combining that with the contents of MEMMAP).
Here, logic 560 within the CPU core hardware may auto-
matically flag the attempted access to the lock bit in the
STRUCT_PAGE data structure in system memory, and,
instead, read the value of the lock bit in the TLB and return
that value to the OS.

Alternatively to any these options, the OS, compiler and
CPU may not impose any intelligence and simply permit
access system memory and read the lock bit from STRUCT _
PAGE 540. Again, at least the MEMMAP value may be kept
in a control register rather than being maintained by the OS
so that the correct location in STRUCT_PAGE 540 may be
automatically calculated in hardware.

In the case where some intelligence is utilized to read the
value of the lock bit from the TLB and present that value to
the OS, the OS will understand that the page is locked and
will identify another page to swap out of system memory
704.

In the case where access the value of the lock bit in
STRUCT_PAGE 540 in system memory is permitted, note
that the avoidance of the initial setting of the lock bit in
system memory at procedure 702 causes the OS to receive
an incorrect reading from the lock bit in STRUCT_PAGE
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(i.e., that the page is not locked). As such, the OS will
incorrectly assume that it is permissible to swap the page out
of system memory.

Here however, as part of the standard swapping out
process, the OS calls out a TLB_FLUSH instruction to flush
the entry for the page from the TLB 531. Because the lock
bit in the entry in the TLB 531 for the page is set, logic
circuitry 560 raises some kind of objection to the FLUSH
instruction (e.g., by returning a fault with descriptor speci-
fying that the page is locked). The OS, in response to the
objection by the hardware understands that the page cannot
be swapped out of system memory and identifies another
page in system memory to swap out 704.

Exemplary Computer Architectures

FIGS. 8-11 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, serv-
ers, network devices, network hubs, switches, embedded
processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

Referring now to FIG. 8, shown is a block diagram of a
system 800 in accordance with one embodiment of the
present invention. The system 800 may include one or more
processors 810, 815, which are coupled to a controller hub
820. In one embodiment the controller hub 820 includes a
graphics memory controller hub (GMCH) 890 and an Input/
Output Hub (IOH) 850 (which may be on separate chips);
the GMCH 890 includes memory and graphics controllers to
which are coupled memory 840 and a coprocessor 845; the
IOH 850 is couples input/output (I/O) devices 860 to the
GMCH 890. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 840 and the coprocessor 845
are coupled directly to the processor 810, and the controller
hub 820 in a single chip with the IOH 850.

The optional nature of additional processors 815 is
denoted in FIG. 8 with broken lines. Each processor 810,
815 may include one or more of the processing cores
described herein and may be some version of the processor
1100.

The memory 840 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or
a combination of the two. For at least one embodiment, the
controller hub 820 communicates with the processor(s) 810,
815 via a multi-drop bus, such as a frontside bus (FSB),
point-to-point interface such as QuickPath Interconnect
(QPI), or similar connection 895.

In one embodiment, the coprocessor 845 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embed-
ded processor, or the like. In one embodiment, controller hub
820 may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 810, 815 in terms of a spectrum of metrics of merit
including architectural, microarchitectural, thermal, power
consumption characteristics, and the like.

In one embodiment, the processor 810 executes instruc-
tions that control data processing operations of a general
type. Embedded within the instructions may be coprocessor
instructions. The processor 810 recognizes these coproces-
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sor instructions as being of a type that should be executed by
the attached coprocessor 845. Accordingly, the processor
810 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 845. Coprocessor(s)
845 accept and execute the received coprocessor instruc-
tions.

Referring now to FIG. 9, shown is a block diagram of a
first more specific exemplary system 900 in accordance with
an embodiment of the present invention. As shown in FIG.
9, multiprocessor system 900 is a point-to-point interconnect
system, and includes a first processor 970 and a second
processor 980 coupled via a point-to-point interconnect 950.
Each of processors 970 and 980 may be some version of the
processor 1100. In one embodiment of the invention, pro-
cessors 970 and 980 are respectively processors 810 and
815, while coprocessor 938 is coprocessor 845. In another
embodiment, processors 970 and 980 are respectively pro-
cessor 810 coprocessor 845.

Processors 970 and 980 are shown including integrated
memory controller (IMC) units 972 and 982, respectively.
Processor 970 also includes as part of its bus controller units
point-to-point (P-P) interfaces 976 and 978; similarly, sec-
ond processor 980 includes P-P interfaces 986 and 988.
Processors 970, 980 may exchange information via a point-
to-point (P-P) interface 950 using P-P interface circuits 978,
988. As shown in FIG. 9, IMCs 972 and 982 couple the
processors to respective memories, namely a memory 932
and a memory 934, which may be portions of main memory
locally attached to the respective processors.

Processors 970, 980 may each exchange information with
a chipset 990 via individual P-P interfaces 952, 954 using
point to point interface circuits 976, 994, 986, 998. Chipset
990 may optionally exchange information with the copro-
cessor 938 via a high-performance interface 939. In one
embodiment, the coprocessor 938 is a special-purpose pro-
cessor, such as, for example, a high-throughput MIC pro-
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor,
or the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 990 may be coupled to a first bus 916 via an
interface 996. In one embodiment, first bus 916 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O
interconnect bus, although the scope of the present invention
is not so limited.

As shown in FIG. 9, various [/O devices 914 may be
coupled to first bus 916, along with a bus bridge 918 which
couples first bus 916 to a second bus 920. In one embodi-
ment, one or more additional processor(s) 915, such as
coprocessors, high-throughput MIC processors, GPGPU’s,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 916.
In one embodiment, second bus 920 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
920 including, for example, a keyboard and/or mouse 922,
communication devices 927 and a storage unit 928 such as
a disk drive or other mass storage device which may include
instructions/code and data 930, in one embodiment. Further,
an audio 1/0 924 may be coupled to the second bus 920.
Note that other architectures are possible. For example,
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instead of the point-to-point architecture of FIG. 9, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 10, shown is a block diagram of a
second more specific exemplary system 1000 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 9 and 10 bear like reference numerals, and certain
aspects of FIG. 9 have been omitted from FIG. 10 in order
to avoid obscuring other aspects of FIG. 10.

FIG. 10 illustrates that the processors 970, 980 may
include integrated memory and 1/O control logic (“CL”) 972
and 982, respectively. Thus, the CL 972, 982 include inte-
grated memory controller units and include I/O control
logic. FIG. 10 illustrates that not only are the memories 932,
934 coupled to the CL 972, 982, but also that I/O devices
1014 are also coupled to the control logic 972, 982. Legacy
1/0 devices 1015 are coupled to the chipset 990.

Referring now to FIG. 11, shown is a block diagram of a
SoC 1100 in accordance with an embodiment of the present
invention. Dashed lined boxes are optional features on more
advanced SoCs. In FIG. 11, an interconnect unit(s) 1102 is
coupled to: an application processor 1110 which includes a
set of one or more cores 1102A-N and shared cache unit(s)
1106; a system agent unit 1110; a bus controller unit(s) 1116;
an integrated memory controller unit(s) 1114; a set or one or
more coprocessors 1120 which may include integrated
graphics logic, an image processor, an audio processor, and
a video processor; an static random access memory (SRAM)
unit 1130; a direct memory access (DMA) unit 1132; and a
display unit 1140 for coupling to one or more external
displays. In one embodiment, the coprocessor(s) 1120
include a special-purpose processor, such as, for example, a
network or communication processor, compression engine,
GPGPU, a high-throughput MIC processor, embedded pro-
cessor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combi-
nation of such implementation approaches. Embodiments of
the invention may be implemented as computer programs or
program code executing on programmable systems compris-
ing at least one processor, a storage system (including
volatile and non-volatile memory and/or storage elements),
at least one input device, and at least one output device.

Program code, such as code 930 illustrated in FIG. 9, may
be applied to input instructions to perform the functions
described herein and generate output information. The out-
put information may be applied to one or more output
devices, in known fashion. For purposes of this application,
a processing system includes any system that has a proces-
sor, such as, for example; a digital signal processor (DSP),
a microcontroller, an application specific integrated circuit
(ASIC), or a microprocessor.

The program code may be implemented in a high level
procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
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supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritable’s
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type
of media suitable for storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

Emulation (including binary translation, code morphing,
etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a
target instruction set. For example, the instruction converter
may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The instruc-
tion converter may be implemented in software, hardware,
firmware, or a combination thereof. The instruction con-
verter may be on processor, off processor, or part on and part
off processor.

FIG. 12 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 12
shows a program in a high level language 1202 may be
compiled using an x86 compiler 1204 to generate x86 binary
code 1206 that may be natively executed by a processor with
at least one x86 instruction set core 1216. The processor with
at least one x86 instruction set core 1216 represents any
processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 1204
represents a compiler that is operable to generate x86 binary
code 1206 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 1216. Similarly,
FIG. 12 shows the program in the high level language 1202
may be compiled using an alternative instruction set com-
piler 1208 to generate alternative instruction set binary code
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1210 that may be natively executed by a processor without
at least one x86 instruction set core 1214 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1212 is used to convert the
x86 binary code 1206 into code that may be natively
executed by the processor without an x86 instruction set
core 1214. This converted code is not likely to be the same
as the alternative instruction set binary code 1210 because
an instruction converter capable of this is difficult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive instruction set. Thus, the instruction converter 1212
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 1206.

What is claimed is:

1. A method, comprising:

locking a memory page for an accelerator that is coupled
to a processing core by setting a bit in attribute data of
a translation look-aside buffer entry responsive to an
instruction to be executed by said pipeline that includes
a virtual address to be locked and a binary value for the
lock bit, said translation look-aside buffer entry con-
taining said page’s virtual address to physical address
translation, said translation look-aside buffer entry
within a translation look-aside buffer of said processing
core, said processing core and said accelerator using a
same physical address to virtual address translations.

2. The method of claim 1 wherein said method avoids, in
locking said memory page, setting a second lock bit for said
memory page, said second lock bit kept in second attribute
data within a system memory.

3. The method of claim 1 wherein said locking is per-
formed commensurate with an enabling of said accelerator.

4. The method of claim 3 further comprising clearing said
bit commensurate with a disabling of said accelerator.

5. The method of claim 4 wherein said disabling is not
caused by a power off, reset or shutdown event.

6. The method of claim 5 wherein said disabling is caused
by lack of an imminent need for said accelerator during
normal and continuous operation of said processing core.

7. The method of claim 6 wherein said enabling is in
response to activation of an application that uses said
accelerator.

8. An apparatus, comprising:

a processing core and at least one accelerator coupled to
said processing core, said processing core comprising a
pipeline having a translation look aside buffer, said
processing core comprising logic circuitry to set a lock
bit in attribute data of an entry within said translation
look-aside buffer entry to lock a page of memory
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reserved for said accelerator, wherein said logic cir-
cuitry to set said lock bit responsive to an instruction to
be executed by said pipeline that includes a virtual
address to be locked and a binary value for the lock bit.

9. The apparatus of claim 8 wherein said pipeline further
comprises memory access circuitry to access attributes of
memory pages, said attributes stored in system memory.

10. The apparatus of claim 9 wherein said logic circuitry
to detect an access to said attributes of memory pages to set
a second lock bit for said page kept therein and sets said lock
bit in said translation look-aside buffer in lieu thereof.

11. The apparatus of claim 8 wherein said logic circuitry
is designed to raise an objection if an instruction is received
for execution by said pipeline to flush said entry from said
translation look-aside buffer when said lock bit is set.

12. The apparatus of claim 8 wherein said accelerator and
said processing core to utilize a same virtual address to
physical address translation information.

13. A machine readable medium containing program code
that when processed by a processor of a computing system
causes a method to be performed, said method comprising:

detecting code to access and set a lock bit in attribute

information in system memory, said attribute informa-
tion containing attribute information of pages of said
system memory, said lock bit to lock a page of said
pages, said page reserved for an accelerator that accel-
erates tasks for a processing core;

in response to said detecting, instructing said processing

core to set another lock bit within a translation look-
aside buffer entry of said processing core rather than
access said system memory by executing an instruction
to be that includes a virtual address to be locked and a
binary value for the lock bit, said entry containing a
virtual address to physical address translation for said
page.

14. The machine readable medium of claim 13 where said
instructing includes inserting an instruction into object code
that explicitly calls out said setting of said another bit.

15. The machine readable medium of claim 13 wherein
said instruction includes as input operand information said
page’s virtual address and a value to set said bit to.

16. The machine readable medium of claim 13 wherein
said processing core and said accelerator use same virtual
address to physical address translations.

17. The machine readable medium of claim 13 wherein
said setting of said another bit is commensurate with enable-
ment of said general purpose processing core.

18. The machine readable medium of claim 13 wherein
said method further comprises:

detecting second code to access and clear said lock bit in

said attribute information in system memory;

in response to said detecting of said second code, instruct-

ing said general purpose core to clear said another lock
bit.



